核工業帶來的水污染,大氣污染,固體廢棄物污染,熱污染以及如何處理放射性廢物
放射性這個指標屬于最危險的廢物范疇,也是很難處理的。廢熱還是比較好處理的,放射性三廢是你最應該關心的。 技術路線都是必須把這些污染物質進行固定化。即把水中的、氣中的這些東西盡量的往固體形態去遷移,降低其流動性和移動能力后再處理。 當放射性物質被固定化后,則最長見的是采用硅酸鹽水泥固定法進行再包裹似的固定。基本技術都包括:壓實和焚燒技術,水泥固化技術,瀝青固化技術,聚合體固化技術,水力壓裂處置中放泥漿技術。以下是一些教材上的相關介紹,從放射性固廢再處理開始的。去污 受放射性沾污的設備、器皿、儀器等,如果使用適當的洗滌劑、絡合劑或其他溶液在一定部位擦拭或浸漬去污,大部分放射性物質可被清洗下來。這種處理,雖然又產生了需要處理的放射性廢液等,但若操作得當,體積可能縮小,經過去污的器物還能繼續使用。另外,采用電解和噴鍍方法也可消除某些被沾污表面的放射性。 壓縮 將可壓縮的放射性固體廢物裝進金屬或非金屬容器并用壓縮機緊壓。體積可顯著縮小,廢紙、破硬紙殼等可縮小到1/3至1/7。玻璃器皿先行破碎,金屬物件則先行切割,然后裝進容器壓縮,也可以縮小體積,便于運輸和貯存。 焚燒 可燃性固體廢物如紙、 布、塑料、木制品等,經過焚燒,體積一般能縮小到1/10至1/15,最高可達1/40。焚燒要在焚燒爐內進行。焚燒爐要防腐蝕,并要有完善的廢氣處理系統,以收集逸出的帶有放射性的微粒、揮發性氣溶膠和可溶性物質。焚燒后,放射性物質絕大部分聚積在灰燼中,殘余灰分和余燼要妥加管理以防被風吹散。已收集的灰燼一般裝入密封的金屬容器,或摻入水泥、瀝青和玻璃等介質中。焚燒法由于控制放射性污染面的要求很高,費用很大,實際應用受到一定限制。 埋藏 選擇埋藏地點的原則是:對環境的影響在容許范圍以內;能經常監督;該地區不得進行生產活動;埋藏在地溝或槽穴內能用土壤或混凝土覆蓋等。場地的地質條件須符合:①埋藏處沒有地表水;②埋藏地的地下水不通往地表水;③預先測得放射性在土壤內的滯留時間為數百年,其水文系統簡單并有可靠的預定滯留期;④埋藏地應高于最高地下水位數米。 有些國家認為天然鹽層比較適宜作為這種廢物的貯存庫。理由是鹽層的吸濕性良好,對容器的腐蝕性較小,易于開挖,時間久了,有可能形成密封的整體,對長期貯存更為安全。德意志聯邦共和國正在一座廢棄的阿瑟鹽礦進行試驗,美國國立橡樹嶺實驗室 (ORNL)提出了理想的鹽穴貯藏庫的模型。 海洋處置 近海國家采用桶裝廢物擲進深水區和大陸架以外海域的海洋處置法。要求盛裝容器具有足夠的下沉重量,能經受住海底的碰撞,能抵御深水區的高壓作用,并能防止腐蝕和減少放射性的浸出量。經過實踐認為,處置區必須遠離海岸、潮汐活動區和水產養殖場。此法對公海會造成潛在危害,國際上頗有爭議。 放射性廢液轉化成的固體廢物的處置 放射性廢液濃縮產物經過固化處理而轉化成的放射性固體廢物,一些國家傾向于采取埋藏的辦法處置,認為這樣能保證安全。依照所含放射性強度的自發熱情況,低水平廢物可直接埋在地溝內。中等水平的則埋藏在地下垂直的混凝土管或鋼管內。高水平固體廢物每立方米的自發熱量可達430千卡/小時以上,必須用多重屏障體系:第一層屏障是把廢物轉變成為一種惰性的、不溶的固化體,第二層屏障是將固化體放在穩定的、不滲透的容器中;第三層屏障是選擇在有利的地質條件下埋藏。 最終處置 放射性固體廢物管理的根本問題是最終處置。目前在探討中的高水平放射性廢物的最終處置方法有:將重要的放射性核素如(銫、(鍶、(氪和(碘等置于反應堆中照射,使之轉變成盡快衰變的短壽命核素或轉變成穩定性核素;利用遠程火箭將放射性物質運載到地球引力以外的太空中去;或是置于南極冰上,利用其釋放的熱能溶化冰塊形成一井穴而將廢物封錮等。這些設想,涉及國際條約,并且有技術和經濟上的困難,近期內難于實現。
對核工業帶來的水污染可以用活性炭吸附和反滲透的工藝處理。
本網站文章僅供交流學習 ,不作為商用, 版權歸屬原作者,部分文章推送時未能及時與原作者取得聯系,若來源標注錯誤或侵犯到您的權益煩請告知,我們將立即刪除.