空氣過濾器的阻力如何把握?
過濾器機械強度。面積大的過濾器,框架和固定裝置所占的比例較小。當阻力過大時,可能造成過濾器的松散或破損。從這方面確定終阻力,其值一般都偏大,因此一般不做考慮。高效過濾器更換費用(價格+勞力);過濾器運行阻力能耗系統風量允許變化范圍;過濾效率變化,低效率的過濾器(G4以下)常采用直徑>20μm的粗纖維濾料;纖維間隙約為200-400μm;過濾風速大約為0.5-2m/s。阻力過大時,過濾器上的積灰會再被氣流帶走,此時雖阻力不再升高,但過濾效率急劇下降。因此對此類過濾器,要在其效率下降之前考慮更換。空氣過濾器通常是引起通風系統風量變化的最主要部件。對空調設計人員來說,應根據已確定的過濾器初終阻力和用戶允許的風量變化范圍來選配風機及設計空調器。并提供用戶過濾器更換時的終阻力值。
運行初阻力:系統運行之初,過濾器的阻力,如果沒有測量壓力的儀表,就只能取設計風量下的阻力作為運行初阻力;額定初阻力:在額定風量下,過濾器樣本、過濾器特性曲線或過濾器檢測報告所提供的初阻力。設計初阻力:系統設計風量下,過濾器阻力(應由空調系統設計師提供)。運行中應定期檢查過濾器的阻力超出初阻力的情況(每個過濾段都應安裝阻力監測裝置),以決定何時更換過濾器。低效率過濾器一般使用粗纖維濾料,纖維間空隙大,過大的阻力有可能將過濾器上的積塵吹散,這種情況下,過濾器阻力不再增高,但過濾效率降到幾乎為零,因此要嚴格控制粗效過濾器的終阻力值。過濾器越臟,阻力增長越快。過高的終阻力不意味著過濾器使用壽命會延長,過高阻力會使空調系統風量銳減。過高的終阻力是不可取的。
在某種空氣過濾器設計定型時,要綜合考慮到它在空調凈化系統中裝置的部位,以及其構造形式,過濾效率及阻力等相關因素來確定它的面風速,由此得到它的額定風量。例如粗、中效空氣過濾器一般裝置在空調機組內,考慮它的面風速與空調機組的斷面風速相一致,以便于布置。則按空調機組通常的斷面質量流速2.0~3.6kg/(m2.s)可以得到一個500x500迎風面尺寸的空氣過濾器,它的額定風量宜在1500~2700m3/h時,假如空調機組截面不變,過濾器就需要采取人字形、曲折形布置;假如要維持過濾器在斷面上一字排開,那么空調機組的過濾段斷面就需要擴大。這兩種情況在工程應用中都常見。
高效空氣過濾器主要布置在系統末端出風口處。普通帶波紋隔板紙的高效過濾器其濾速約為0.025~0.028m/s,無隔板高效過濾器的濾速約為0.022~0.025m/s,此時,過濾器的效率和阻力的綜合效果是可接受的。相應的面風速約在1.1~1.2m./s,對于國產484x484x220的GB-01有隔板高效過濾器相應通過風量為1000m3/s,尺寸為630x630x220的GB-03通過風量為1500m3/s。這個風量就是過濾器設計時所確定的額定風量。需要指出的是工程設計時,過濾器的選用風量并不一定等于額定風量。某些特定條件下可能略為高于額定風量。但一般實際設計選用時往往考慮讓過濾器低于額定風量運行。這樣做初投資費用會相應增加,但因初阻力較小節省運行能耗,并可適當延長使用壽命。通過技術經濟分析得知,這樣做的結果一般都有較好的效益。
本網站文章僅供交流學習 ,不作為商用, 版權歸屬原作者,部分文章推送時未能及時與原作者取得聯系,若來源標注錯誤或侵犯到您的權益煩請告知,我們將立即刪除.