廢水凈化處理的方法(廢水凈化處理的方法中哪種可以處理含鹽量高的廢水)
一、廢水再處理池里凈化運用了什么方法?
在生活污水和工業廢水中有很多有機物,可以被細菌利用,在無氧的環境中,一些桿菌和甲烷菌等細菌通過發酵把這些有機物分解,產生甲烷,可以燃燒,用于照明、取暖等,是一種清潔的能源,同時起到凈化污水的作用.可見有機物正確,符合題意.
二、核廢水凈化方法?
核污染而產生的廢水治理方法:
將沉淀劑與廢水中微量的放射性核素發生共沉淀作用的方法。廢水中放射性核素的氫氧化物、碳酸鹽、磷酸鹽等化合物大都是不溶性的,因而能在處理中被除去。
化學處理的目的是使廢水中的放射性核素轉移并濃集到小體積的污泥中去,而使沉積后的廢水剩余很少的放射性,從而能夠達到排放標準。
此法優點是費用低廉,對數放射性核素具有良好的去除效果,能夠處理那些非放射性成分及其濃度以及流化相當大的廢水,使用的處理設施和技術都有相當成熟的經驗。
核電站廢水主要包括主設備和輔助設備排空水、反應堆排放水、第二回路廢水、清洗廢液、離子交換裝置再生廢水和專用洗滌水等,主要為中低放射性廢水。
乏燃料后處理廢水主要包括乏燃料后處理和放射性物質分離制造過程產生的廢水等,這兩種廢水放射性濃度都很高,危險性極大。
三、凈化器的廢水怎么處理?
我們可以收集廢水,回收利用。不少人估計不了解反滲透凈水器,它有一個排放廢水的管道,有些安裝人員直接連接下水管道,如果廢水多,這樣做法不合理。
我們可以將這個廢水管道接到桶中,這是廢水并不是臟,只是沒有通過RO膜濾芯,收集之后,還能拖地、沖廁所和澆花等,不浪費水,還能節省!
四、凈化核廢水處理方案?
在核電站,由于處理廢水的量大、放射性物質濃度較高,都建有專門的放射性污水處理系統,其常用的工藝是蒸發和過濾。前面提到過,廢水中的大多數放射性元素都不具有揮發性,利用這一特性,科學家對廢水進行加熱令其蒸發,再將留下的無法蒸發的放射性物質作濃縮處理。
這個方法有兩個優點,其一,核電站運行過程中本身就有很多無用的廢熱,加熱廢水不會多耗能源;
其二,蒸發法基本不需要使用其他物質,不會像其他方法因為污染物的轉移而產生其他形式的污染物。
另一種方法是過濾法,原理類似我們日常生活中使用的凈水器。
在廢水流經的管道中安放了專門用來吸附放射性物質的樹脂,這樣水流走了,放射性物質留在樹脂中。過一段時間,樹脂吸附“飽”了,可以換上新的樹脂。
而吸滿了放射性物質的樹脂可以通過壓縮等方法減小體積,收集后澆筑水泥密封,若樹脂中放射性強度不高,放入鐵桶密封也行。 專家認為,福島核電站的放射性廢水也將得到處理,成為干凈的廢水后再排放。
但由于目前電廠遭受的損壞比較大,還不清楚放射性污水處理系統是否可用,因此暫且將這些廢水存放起來,留待今后處理。
另外放射性污水存放一段時間后其放射性強度也會減弱,更有利于處理。
五、反滲透廢水的處理方法?
1、如果是反滲透的凈水機,所排出的廢水是已經經過了前三級過濾又沖洗了反滲透膜的水,這種如果是直接倒掉是很可惜的,可以用這種水涮拖把,洗菜洗衣服沖廁所都可以。
2、建議凈水機過濾的廢水管不用順到下水道中,要單獨順到一個容器中,這種水接出來涮拖把和沖廁所可以,起到節約用水的作用。
六、處理核廢水的最好方法?
1、化學沉淀法:是將沉淀劑與廢水中微量的放射性核素發生共沉淀作用的方法。廢水中放射性核素的氫氧化物、碳酸鹽、磷酸鹽等化合物大都是不溶性的,因而能在處理中被除去。化學處理的目的是使廢水中的放射性核素轉移并濃集到小體積的污泥中去,而使沉積后的廢水剩余很少的放射性,從而能夠達到排放標準。
2、離子交換法:采用離子交換樹脂,適用于含鹽量較低的廢液。當含鹽量較高時,用離子交換樹脂來處理所花的費用比選擇性工藝要高。這主要是低選擇性的樹脂對放射性核素有很大的關聯。在放射性廢水凈化中,利用電滲析的方法可以增加離子交換工藝的利用效率。
3、吸附法:利用多孔性固態物質吸附去除水中重金屬離子的一種有效方法。吸附法的關鍵技術是吸附劑的選擇。常用的吸附劑有活性炭、沸石、高嶺土、膨潤土、黏土等。其中沸石價格低廉,安全易得,與其他無機吸附劑相比,沸石具有較大的吸附能力和較好的凈化效果。
4、蒸發濃縮法:具有較高的濃縮因子和凈化系數,多用于處理中、高水平放射性廢水。蒸發法的工作原理是:將放射性廢水送入蒸發裝置,同時導入加熱蒸汽將水蒸發成水蒸氣,而放射性核素則留在水中。蒸發過程中形成的凝結水排放或回用,濃縮液則進一步進行固化處理。
5、膜分離技術:是處理放射性廢水的比較高效、經濟、可靠的方法。由于膜分離技術具有出水水質好、物料無相變、低能耗等特點,膜技術受到了積極的研究。
國外所采用的膜技術主要有:微濾、超濾、納濾、水溶性多聚物-膜過濾、反滲透(RO)、電滲析、膜蒸餾、電化學離子交換、液膜、鐵氧體吸附過濾膜分離及陰離子交換紙膜等方法。
6、生物處理法:包括植物修復法和微生物法。植物修復是指利用綠色植物及其根際土著微生物共同作用以清除環境中的污染物的一種新的原位治理技術。
從現有的研究成果看,適用的生物修復技術類型主要有人工濕地技術、根際過濾技術、植物萃取技術、植物固化技術、植物蒸發技術。試驗結果表明,幾乎水體中所有的鈾都能富集于植物的根部。
七、廢水酸水處理方法?
離子交換樹脂法
離子交換樹脂法處理有機酸廢液的基木原理是利用某些離子交換樹脂,可從廢酸溶液中吸收有機酸而排除無機酸和金屬鹽的功能來實現不同酸及鹽之間分離的一種方法。
鹽處理
所謂鹽析就是使用大量飽和食鹽水將廢酸中的各種有機雜質幾乎全部析出。但是這種方法會產生鹽酸,影響廢酸中硫酸的回收利用,因此研究了用硫酸氫鈉飽和溶液進行鹽析除去廢酸中有機雜質的方法。
焙燒法
應用于鹽酸這樣揮發性酸,通過焙燒使其從溶液中分離以達到回收效果。
八、核廢水怎樣凈化?
一種核廢水的處理方法,將質量比1%-5%的高吸水性樹脂直接加入用化學沉淀法濃縮后的核廢水中,然后攪拌下使核廢水凝膠化,再將核廢水凝膠與前面用化學沉淀法濃縮后過濾出來的疏松絨粒和化學絮凝劑一并轉移到防滲、防輻射的水泥槽中,加壓使凝膠變形為水泥槽內腔的形狀,在其表面鋪設一層的水泥粉,再次加壓,使凝膠中部分水滲出進入水泥粉層使水泥粉固化,然后先涂一層防水防滲防漏涂料,在涂一層防輻射涂料,之后在水泥槽的頂端加上水泥蓋,得到水泥密封槽,核廢水以凝膠的形式存在于槽內,最后將密封槽托運掩埋于建在地下厚厚巖石層里的核廢料處理庫中或4000m以下的海底對人不會造成傷害,對環境污染小。本發明可用于核電站排放的核廢水處理。
九、核廢水如何凈化?
將質量比1%-5%的高吸水性樹脂直接加入用化學沉淀法濃縮后的核廢水中,然后攪拌下使核廢水凝膠化。再膠與將核廢水凝前面用化學沉淀法濃縮后過濾出來的疏松絨粒和化學絮凝劑一并轉移到防滲、防輻射的水泥槽中
加壓使凝膠變形為水泥槽內腔的形狀,在其表面鋪設一層的水泥粉,再次加壓,使凝膠中部分水滲出進入水泥粉層使水泥粉固化。然后先涂一層防水防滲防漏涂料,再涂一層防輻射涂料,之后在水泥槽的頂端加上水泥蓋,得到水泥密封槽,核廢水以凝膠的形式存在于槽內。最后將密封槽托運掩埋于建在地下厚厚巖石層里的核廢料處理庫中或4000m以下的海底。
十、核廢水怎么凈化?
連續幾天,日本福島核電站放射性元素進入海水、地下水等水體的消息引人關注。而注水冷卻反應堆的同時,也在不斷制造著新的“污水”。這些核廢水可能對周邊環境造成怎樣的影響?可以通過什么方法處理凈化?
自然界中,水循環是一個全球性的過程,通過蒸發、降水、徑流等途徑完成整體水量平衡。而地下水參與水循環的途徑比較特別,主要通過土壤和植被的蒸發、蒸騰向上運動成為大氣水分。值得關注的是,放射性元素基本都不具有揮發性,也就是說,無法通過蒸發進入大氣,只能留在地下。由于大多數放射性元素的原子核中質子數、中子數之和數量大,往往“分量”較重,可能在土壤中不斷下沉,進入地下水系統。在這種情況下,很難清除這些放射性元素,因此對當地污染的影響較大。
再來說從電站出水口測得的超過標準值數千倍的放射性元素。有專家形象地將這一情況比作“倒墨汁”。試想一下,若將墨汁倒入一杯水中,結果一定是一杯墨黑墨黑的水;若將其倒入一浴缸清水,可能墨汁入水處顏色最黑,離得越遠,墨色越淺;若是倒進池塘里,說不定沒過多久又是一池清水。排入海中的核廢水也是一樣的道理,大海的水量巨大,自凈能力強,可以充分稀釋核廢水中的放射性物質,使其濃度降到對人體安全水平。當然,這并不意味著可以無限制往大海里“倒臟水”。
核廢水的來源是多樣的,核事故僅僅是其中一部分。核電站在正常運行過程中,甚至清洗接觸放射性物質的工作服裝,也都會產生核污染的廢水。為了不給自然環境增添負擔,人類已研發出多種較為成熟的處理核廢水技術。
在核電站,由于處理廢水的量大、放射性物質濃度較高,都建有專門的放射性污水處理系統,其常用的工藝是蒸發和過濾。前面提到過,廢水中的大多數放射性元素都不具有揮發性,利用這一特性,科學家對廢水進行加熱令其蒸發,再將留下的無法蒸發的放射性物質作濃縮處理。這個方法有兩個優點,其一,核電站運行過程中本身就有很多無用的廢熱,加熱廢水不會多耗能源;其二,蒸發法基本不需要使用其他物質,不會像其他方法因為污染物的轉移而產生其他形式的污染物。另一種方法是過濾法,原理類似我們日常生活中使用的凈水器。在廢水流經的管道中安放了專門用來吸附放射性物質的樹脂,這樣水流走了,放射性物質留在樹脂中。過一段時間,樹脂吸附“飽”了,可以換上新的樹脂。而吸滿了放射性物質的樹脂可以通過壓縮等方法減小體積,收集后澆筑水泥密封,若樹脂中放射性強度不高,放入鐵桶密封也行。
專家認為,福島核電站的放射性廢水也將得到處理,成為干凈的廢水后再排放。但由于目前電廠遭受的損壞比較大,還不清楚放射性污水處理系統是否可用,因此暫且將這些廢水存放起來,留待今后處理。另外放射性污水存放一段時間后其放射性強度也會減弱,更有利于處理。
本網站文章僅供交流學習 ,不作為商用, 版權歸屬原作者,部分文章推送時未能及時與原作者取得聯系,若來源標注錯誤或侵犯到您的權益煩請告知,我們將立即刪除.