一氧化氮的研究簡史
1980年,一位科學家完成了一個精巧設計的實驗,并據此發表了一篇論文。這不是一件多么重大的事情,但對于一氧化氮來說卻是個轉折點,雖然這一年科學界并不知道那種特別的物質就是一氧化氮。
這位美國藥理學家的名字叫做羅伯特?F。佛契哥特,他在著名的《自然》(Nature)雜志上發表論文,指出乙酰膽堿(ACh)的舒張血管作用依賴于血管內皮釋放的某種可擴散物質。隨后他們又發現緩激肽(BK)等多種物質擴張血管的作用也是遵循類似的機理,并將該物質命名為血管內皮舒張因子(EDRF)。
佛契哥特發現有一種物質可以舒張血管,這并不是他的獨到之處,早在19世紀70年代,人們就發現有機硝酸酯對缺血性心臟病有良好的治療作用,但當時并不了解其作用機理。19世紀末,在諾貝爾以研制高性能炸藥(TNT)聞名和發跡的同時,人們驚奇地發現,用于治療缺血性心臟病的硝酸甘油(GTN)竟是高性能炸藥的主要活性成分,人們對此困惑不已。
既然這種舒張血管的發現并不特別,那么佛契哥特的論文為什么會引起科學界的關注呢?原因就在于他用精巧設計的實驗證明了這種物質的存在。
表面上看來,佛契哥特的研究與一氧化氮并無直接關聯,而是關于乙酰膽堿等血管活性物質的作用機理。1953年他發表了首篇關于乙酰膽堿和組胺致兔離體血管條收縮的論文,這與當時公認的對整體動物靜注乙酰膽堿或組胺會引起血管舒張的觀點恰恰相反。但他堅持自己的實驗重復性良好,且觀察無誤,并在1955年發表的《血管平滑肌藥理學》綜述中提出假設,認為猶如腎上腺素能有α和β兩種受體,血管平滑肌上也同時含有運動性和抑制性兩種膽堿能受體――現在看來這一結論是錯誤的,然而在當時這一觀點一直被當做權威而被認可。
接下來的問題是,為什么刺激內皮細胞可引起血管平滑肌舒張?這次似乎是單刀直入,他們首先想到的是血管內皮細胞受刺激后會釋放某種物質,該種物質擴散至平滑肌并導致其收縮。佛契哥特像是受到某種特殊的啟示,他回憶道:“那天早晨我剛醒來,一個漂亮的實驗設計突然闖入我的腦海。于是我來到實驗室,立即按照這一方案進行了實驗?!睂嶒灲Y果被撰寫成論文發表于1980年的《自然》雜志上,論文的名字是《內皮細胞是乙酰膽堿誘發動脈平滑肌舒張的必需因素》。
值得一提的是,在《自然》雜志上的這篇文章當時還沒有明確提出內皮舒張因子,直到1982年,他們發表于《美國國家科學院院刊》(PNAS)上的關于緩激肽內皮依賴性舒張血管作用的論文中,才正式提出內皮舒張因子這一名詞。
這篇論文在學術界引起了廣泛關注,吸引了包括加州大學洛杉磯分校的伊格納羅(LouisJ.Ignarro)教授在內的許多科學工作者從事有關內皮舒張因子的研究。內皮舒張因子是一種不穩定的化合物,能被血紅蛋白及超氧陰離子自由基滅活。長期研究亞硝基化合物的藥理作用的伊格納羅與佛契哥特合作,針對內皮舒張因子的藥理作用以及化學本質進行了一系列實驗,發現內皮舒張因子與一氧化氮及許多亞硝基化合物一樣能夠激活可溶性鳥苷酸環化酶(SolubleGuanylateCyclase,sGC),一氧化氮主要通過環磷鳥苷(cGMP)途徑擴張血管。
穆拉德博士的發現
20世紀50年代,環磷鳥苷作為一種天然產物標志在尿中發現,相關酶類包括作用于環磷鳥苷的合成的鳥苷酸環化酶(GuanylateCyclase,GC)、水解環磷鳥苷的磷酸二酯酶和選擇性地被環磷鳥苷激活的蛋白激酶。
穆拉德博士于1970年結束了在美國國立衛生研究院(NIH)的訓練后,決定將更多的研究精力從環化腺核苷一磷酸(cAMP)轉移到環磷鳥苷,并著力解決兩個問題:第一,激素類配基如何與它們的受體結合來調控鳥苷酸環化酶?第二,其分子偶合事件是什么?對受體鳥苷酸環化酶偶聯的了解,有助于使用制劑或藥物來增強或抑制激素在某些臨床疾病中的影響。
在得州大學醫學院,多年來一直獨立從事硝酸甘油擴張血管作用研究的藥理學家穆拉德博士早在1977年就發現硝基酯類藥物及外源性一氧化氮均可使環磷鳥苷的含量增高,他們甚至提出硝基酯類藥物可能是通過形成一氧化氮或某種活性物質來增加細胞內環磷鳥苷的含量,進而使血管擴張和抑制血小板。至此,眾多研究匯聚到一個焦點――硝基類活性物質。
早在20世紀70年代,穆拉德博士與合作者就系統地研究了硝酸甘油及其他具有增強血管活性的作用的有機硝基化合物的藥理作用,發現這些化合物都能使組織內環鳥苷酸、環化腺核苷一磷酸等第二信使的濃度升高。這類化合物有一個共同的性質,可以在體內代謝產生一氧化氮。1977年,穆拉德博士發現硝酸甘油等必須代謝為一氧化氮才能發揮擴張血管的作用,由此他認為一氧化氮可能是一種對血液流通具有調節作用的信使分子,但當時這一推斷還缺少實驗證據。
穆拉德博士在前期工作中發現,在不同組織勻漿中(包括高速離心上清液和勻漿顆粒部分)都能檢測到鳥苷酸環化酶的活性。但在這兩種組織制備中,酶活性的動力學特征是不同的,最顯著的特征就是勻漿顆粒部分對基質三磷酸鳥苷(GTP)就活性呈現協同催化動力學,而可溶性鳥苷酸環化酶的活性被證實為典型的米曼氏動力學,這個發現提示可溶性鳥苷酸環化酶的活性代表一個三磷酸鳥苷的催化位點。盡管推測鳥苷酸環化酶有不同的亞型,但由于粗制備物也含有競爭底物或產物的核苷酸酶、磷酸酶和磷酸二酯酶而無法剔除不可靠的虛假數據,穆拉德花費了整整12年的時間純化、驗證、克隆、表達和再驗證這個酶,才徹底解決了這個問題。
通過實驗,穆拉德博士發現某些物質包括疊氮鈉、亞硝酸鹽和羥胺,能激活鳥苷酸環化酶。在不同組織包括氣管平滑肌制備物中,疊氮鈉、亞硝酸鹽和羥胺也能提高環磷鳥苷的水平。這些環磷鳥苷水平的提高與平滑肌舒張有關,顯示為直線的劑量應答關系。硝酸甘油,一種從18世紀70年代起應用于臨床心絞痛的藥物,也可活化可溶性鳥苷酸環化酶,在不同的組織包括氣管平滑肌中提高環磷鳥苷的水平,引起平滑肌舒張。
穆拉德博士稱這些不斷增長的可溶性鳥苷酸環化酶激活劑名單中氣管、腸胃和血管平滑肌的弛緩劑為“硝基血管舒張劑”,確信它們能被轉化為一氧化氮,因為用化學法產生的一氧化氮能激活所有測試中的可溶性鳥苷酸環化酶制備物。這些一氧化氮前藥物質的作用機制因此確定。
穆拉德博士提出了一氧化氮能起到調控激素和藥物的細胞內信使的作用的假說,即一個自由基激活一個酶,且這個自由基是一個內源信使分子。由于被純化的可溶性鳥苷酸環化酶的激活作用發生在納摩爾濃度下,并且由于一氧化氮及其氧化產物亞硝酸鹽和硝酸鹽的測定法不敏感,在一氧化氮分析測定的新技術發展后的七八年,這個當年遭到學術界懷疑的假說才被決定性地證實和接受。
穆拉德博士表示,人體內的一氧化氮有兩個來源:一為非酶生,來自體表或者攝入的無機氮的化學降解與轉化;一為酶生,由一氧化氮合酶催化L-精氨酸脫胍基所產生。非酶生性的一氧化氮,大部分來自硝基血管舒張劑家族,包括硝普鹽、有機或無機亞硝酸鹽和硝酸鹽、亞硝胺、氮芥、聯氨等。比如有名的硝酸甘油和硝普鈉的擴張血管、治療心臟病的功能都是通過非酶生性產生的一氧化氮起作用的。酶生性的一氧化氮,來自于一氧化氮的前體物質,例如精氨酸。攝入人體的富含精氨酸的食物,在體內通過酶生性產生一氧化氮并發揮其生理功能。
酶生性一氧化氮產生機理(L-精氨酸在內皮型一氧化氮合酶的作用下生成L-瓜氨酸并釋放一氧化氮)
穆拉德博士的研究集中于由非酶生性產生的一氧化氮的化合物對于一氧化氮合酶的影響,這不僅闡明了一氧化氮在體內擴張血管的作用機制,而且也為新型的藥物和化妝品研發開辟了道路。穆拉德博士所參與的生物科技公司所應用的技術是一種能夠產生一氧化氮的組合,分別為氮劑和酸劑,其中氮劑為亞硝酸鹽或富含亞硝酸鹽的植物提取物,酸劑為維生素C、檸檬酸等足夠強度的有機或者無機酸。使用時,先清潔皮膚,涂抹適量的氮劑化妝品,再涂抹酸劑化妝品,兩者緩慢反應釋放出一氧化氮,滲入皮膚,提高毛細血管血流量,促進膠原蛋白的合成,從而改善膚質。
值得一提的是,早在19世紀末,德國學者格里斯(Griess)就研究和發表了亞硝酸鹽的檢測方法,但當時對其與一氧化氮的關系并不了解。由于亞硝酸鹽是一氧化氮在水溶液中進行氧化代謝的終產物而相對穩定,改良后的格里斯法至今仍是實驗室間接檢測一氧化氮含量最簡單、最常用的方法之一。
一氧化氮與核酸的研究
20世紀80年代,世界生命科學領域建立了“傳遞生命信息3個信使”的學說,即生命體的各種活動都是在3個信使體系的控制和調節下進行的。
我們都知道蛋白質與核酸等生物大分子是生命的主要體現者,但不是生命本身。生命的本質是這些生物大分子之間,以及它們之間復雜而有序的相互聯系和相互作用,這是信息傳遞研究的基本任務。
生命信息傳遞的真諦,就是細胞間通訊的細胞外第一信使以及外界環境因子作用與細胞表面或胞內受體后,通過跨膜傳遞形成胞內第二信使的級聯傳遞,以及其后的核內第三信使誘導基因表達和引起生理反應的過程。生命信息傳遞在應答環境刺激和調節基因表達、生理反應的同時,不僅維持著細胞正常代謝,而且最終決定細胞增殖、生長、分化、衰老和死亡等生命的基本現象。
傳遞生命信息3個信使
第一信使是指各種細胞外信息分子,又稱細胞間信號分子即細胞因子,諸如內分泌激素,前列腺素,氣體信號分子(NO)以及免疫細胞產生的免疫細胞因子。這些生物活性分子由體內各種不同的細胞產生后,能夠通過血液、淋巴液、各種體液等不同途徑,作用到細胞膜表面,引起細胞內的特定反映。
第二信使是指細胞外第一信使與其特異受體結合后,通過信息跨膜傳遞機制激活的受體,刺激細胞膜內特定的效應酶或離子道,而在胞漿內產生的信使物質。這種胞內信息分子起到將胞外信息傳導、放大、變為細胞內可以識別的信息作用。
第三信使又稱DNA結合蛋白,是指負責細胞核內核外信息傳遞的物質,能調節基因的轉錄水平,發揮轉錄因子的作用。這些蛋白質是在細胞胞質內合成后進入細胞核內,發揮信使作用,因而稱這類核蛋白為“核內第三信使”。
所以核酸是細胞內的具有遺傳功能的物質,NO屬于細胞間的通訊物質,沒有NO,再多的細胞無法協同工作,相互發揮作用,生命信息傳遞不出去毫無意義,只有兩者有機結合起來才能共同承擔人體新陳代謝的任務。
本網站文章僅供交流學習 ,不作為商用, 版權歸屬原作者,部分文章推送時未能及時與原作者取得聯系,若來源標注錯誤或侵犯到您的權益煩請告知,我們將立即刪除.