土質污染后,如何恢復?
土質污染后,如何恢復?
目前,我國污染土壤修復技術體系主要由生物和物化修復技術組成,目前國內主要的土壤修復技術如圖所示:
向左轉|向右轉
01
植物修復技術
在土壤修復過程,具體的植物修復技術主要包括植物提取技術、植物穩定技術、植物揮發技術。首先,植物提取技術主要是指通過種植能夠大量吸收并積累重金屬與有機物的植物來吸收土壤中的重金屬與有機物,從而可以將土壤中的重金屬與有機物含量盡可能地轉移到植物身上,然后對植物進行收割和處理,以達到降低土壤重金屬與有機物含量和改善土壤的技術;
其次,植物穩定技術主要是指利用植物根際相關微生物的分泌屬性,將土壤中的重金屬與有機物進行有效的沉淀或者螯合,從而預防重金屬與有機物繼續往地下滲透而污染地下水或者其他動植物,而間接地降低重金屬與有機物對人類健康的侵害;最后,植物揮發技術主要是指通過植物本身能夠進行吸收、積累和揮發的屬性,對土壤中的重金屬與有機物進行直接吸收積累與揮發,從而降低土壤重金屬與有機物的含量。
02
微生物修復技術
對于微生物修復技猛族術而言,往往是利用一些微生物的作用進行土壤和水芹凳體中污染物的清理或是進行污染物無害化處理的過程。在城市的土壤中,往往微生物的數量和種類都相對較大,它們在進行重金屬與有機物無害化處理中發揮的作用是非常不可忽視的。利用微生物進行土壤中重金屬與有機物的毒性的降低或者是吸附積累在土壤中的重金屬與有機物,可以慢慢改變根際微環境,這樣就能增加植物對重金屬與有機物的吸收,揮發及固定的效率。
向左轉|向右轉
03
熱化法修復
這種方法就是直接通過加熱,或者是水蒸氣進行加熱,紅外線進行加熱、微波輻射進行加熱,將土壤里的物質慢慢加熱到一定的溫度,這樣可以使土壤中的一些可揮發性的污染物迅速氣化,再對這些可揮發性污染物進行收集工作,就可以有效地降低土壤中污染物的濃度。這種熱化法對于能枝首弊耗的要求比較高,這樣一般要求土壤具有一定的滲透性,只是針對一些可揮發性好的土壤污染物。
04
固化-穩定技術
將污染介質中的污染物進行固定,讓該污染物處于一個比較穩定的狀態,這種修復技術即是固化-穩定技術。該技術把固化的穩定劑和已經被污染的土壤進行混合,通過化學以及物理的方法來進行污染物的物理、化學溶解程度或在環境中的活潑程度的降低。
這種固化-穩定的方法能夠在原位和異位上分別進行,對于原位的固化-穩定技術而言,比較適合那些被有機物污染的土壤或者是那些重金屬污染的修復工作;異位固化-穩定化技術通常適用于處理無機污染物質,不適用于半揮發性有機物和農藥殺蟲劑污染土壤的修復。
固化-穩定技術可以處理多種復雜金屬廢棄物,形成的固體毒性低,穩定性強,處置費用也較低,較為普遍應用于土壤硬金屬污染的快速控制,對多種重金屬與有機物復合污染土壤和放射性物質污染土壤的無害化處理具有明顯的優勢。此外,污染物埋藏深度、土壤pH和有機質含量等都會在一定程度上影響該技術的應用以及有效性的發揮。
05
清洗法
在進行清洗法實施的時候往往需要用到一些表面活性劑,這些表面活性劑包括很多的類型:非離子性的表面活性劑p陰離子性的表面活性劑以及陽離子性的表面活性劑等。利用這些表面活性劑在進行沖洗的過程中相對于單純的水力沖洗的去污能力可增強50倍以上,這樣就有了一個極佳的去污效果。
另外,在當今生物技術不斷發展的時候,生物表面活性劑也出現了越來越普及的情況,它的去污效果往往比一些常規的表面活性劑更加的具有環境親和性,更加易于降解,已經漸漸成為一個未來表面活性劑的發展方向。對于一些農藥污染的土壤往往可以采取利用有機溶劑進行清洗的方法達到去污目的。
06
熱脫附技術
熱脫附的主要工作原理就是運用熱能來增強污染物的揮發性,從而將污染物從污染土壤或沉積物中分離出去,并對這部分污染物先行集中處理。通常情況下,熱脫附系統包括熱解吸單元和廢氣處理系統這兩大模塊,其中,熱解吸過程又分為高溫熱脫附和低溫熱脫附。
相較于傳統技術,熱脫附技術的優勢明顯,具備超大范圍的污染物處理能力,其設備可移動、使用靈活,并且經其修復后的土壤可循環再利用,尤其適用于PCBs這類含氯有機物的分離處理,可以有效避免二惡英的產生。鑒于熱脫附技術的優勢性能,現階段很多歐美國家已將土壤熱脫附技術工程化,在高度有機污染土壤的離位和恢復上取得了突破性進展。
向左轉|向右轉
但是,受到相關設備價格昂貴、運行成本過高、脫附時間過長等種種因素的限制,熱脫附技術在持久性有機污染土壤修復中還未得到廣泛應用
一般土質污染。是很難恢復的。
土地資源評價及土壤質量研究進展
關于土地的研究評價工作,涉及土地資源評價和土壤質量研究兩大方面。國外和國內在這方面的研究互有借鑒,也各具特點。
(一)土地資源評價方法研究進展
1.國外土地評價方法
土地評價的目的唯兄就是為合理利用土地、發展經濟提供科學依據。根據評價過程和指標的不同,土地評閉歷價方法分為三大類。第一類是定性方法,第二類是定量方法,第三類是介于前二者之間的半定量土地評價方法。國際上典型的定性化土地評價方法有以美國為代表的土地潛力評價和聯合國糧農組織的土地適宜性評價;定量化土地評價方法主要有模型方法和系統動力學方法;半定量土地評價有參數方法和生態帶(區)方法。
1)土地潛力評價方法。1961年美國對土地潛力進行了評價分類。該土地潛力分類轎山搜系統首先按土地的用途區分為野生、林業、牧用和農用四類,再根據土地潛力影響因子的限定性和障礙性程度將土地分為八級(表2-1、圖2-1)。
2)土地適宜性評價方法。1976年,聯合國糧農組織(FAO)發布了土地適宜性評價(《A Framework for Land Evaluation》)。FAO土地適宜性評價分類系統將土地分為適宜和不適宜兩大類,又按適宜程度和限制性因子分為綱、級、亞級、單元四級(表2-2)。由表2-2可以看出,FAO土地適宜性評價分類系統僅僅是一個評價框架,評價結果的詳略程度可以根據地區條件和評價要求的不同而定。
表2-1 美國的土地潛力分類系統 Table 2-1 Land potential classification system of the USA
圖2-1 美國的土地潛力分類示意圖
圖中Ⅰ―Ⅷ表示土地分級
Fig.2-1 Land potential classification sketch map of the USA
表2-2 聯合國FAO土地適宜性評價分類系統 Table 2-2 Classification system of the FAO of the UN for estimating land applicability
3)農業生態區方法(AEZ)。1978年,聯合國發布的農業生態區方法(AEZ)是把一個土地區域劃分為具有相同性質的很小的土地單元,評價土地適宜性、土地潛力和環境影響的方法。農業生態區是依氣候、地形、土壤、土地覆被來定義的土地資源單位,每個區內對土地利用來說具有特定的潛力和限制性范圍;農業生態單元(AEC)是由地形、土壤、氣候特征組成的最小單元,是農業生態區法的基本單元。其基本工作程序是:第一步,確定土地利用方式及其生態要求,即確定土地利用方式和土地利用方式的生態要求;第二步,從土壤和地形、氣候、土地利用或土地覆被現狀、行政區等方面開展土地資源調查工作,并結合農業生態區根據土地特性和質量劃分農業生態單元;第三步,根據自然產量,劃分土地等級。
4)持續土地利用管理評價。1993年,聯合國FAO發布了《持續土地利用管理評價綱要(An International Framework for Evaluating Sustainable Land Management)》(FESLM)。該評價方法遵循生產性(productivity)、穩定性(security)、保護性(protection)、經濟可行性(viability)和社會接受性(acceptability)等五個評價準則(pillars)。FESLM指標分為自然方面、生物方面、經濟方面、社會方面的指標共四大類。各類指標詳盡而復雜,例如《無灌溉農業土地評價指南》中自然方面的指標包括太陽輻射、溫度、有效給水狀況、根層有效給氧狀況(排水)、有效給養狀況、養分保持能力、扎根條件、影響發芽與成苗的條件、影響生長的空氣濕度、成熟條件、洪水風險、氣候風險、鹽堿化、有毒物質、病蟲害、土壤可使用性、機械化潛力、土地預備與清理要求(植被/雜草)、存儲與加工條件、影響生產時間安排的條件、生產單元內的可達性、潛在管理單元大小、區位、侵蝕風險、土壤退化風險等等。
5)模型方法。1990年,根據1989年七國首腦會議的要求,經濟合作與發展組織(OECD)啟動了生態環境指標研究項目,創立了“壓力-狀態-響應”(PSR)模型的概念框架。有關指標見表2-3和表2-4。
表2-3 壓力-狀態-響應模型的部分指標 Table 2-3 Part of the indexes of the pressure-condition-reaction model
表2-4 環境性狀相關指標(EPI) Table 2-4 Relative environmental properties index
續表
2.國內土地評價方法
我國古代對土地分類定級的工作開始較早,如禹貢時代將土地分為9等,戰國時代將土地分為3等18類共90種,宋朝、明朝、清朝分別將土地分為5等、13等和4等。我國現代土地分類定級工作主要涉及三個部門或單位,即農業部、國土資源部和中國科學院南京土壤研究所。
(1)耕地地力調查與質量評價
農業部開展全國耕地地力調查與質量評價的目的在于查清我國耕地土壤養分狀況、土壤污染問題。該工作以縣為單位,圖件比例尺1:5萬;耕地基礎地力構成要素包括立地條件、土壤條件和農田基礎設施條件。立地條件又包括地貌類型、地形坡度和坡向等、成土母質(殘積物、坡積物、洪積物、沖積物、湖積物、海積物、黃土母質等);土壤條件包括土壤剖面與土體構型、土層狀況(耕層厚度、有效土層厚度、土體厚度、障礙層深度和厚度等)、耕層土壤理化性狀(質地、容重、pH值、交換量、有機質、礦質養分、含鹽量、鹽分構成、地下水礦化度、堿化度和石灰含量等)、直接污染源的背景值、土壤侵蝕程度;農田基礎設施條件包括農田水利工程、水土保持工程、田園化與植被生態建設、土壤培肥水平等。不同類型區的耕地基礎地力評價因素應反映地區性特點(表2-5)。
通過全國耕地地力調查與質量評價,將全國耕地類型區系統劃分為東北黑土型耕地類型區(水稻土)、北方平原潮土-砂姜黑土耕地類型區、北方山地丘陵棕壤-褐土型耕地類型區(含黃棕壤、黃褐土)、黃土高原黃土型耕地類型區、內陸灌漠(淤)土耕地類型區、南方稻田類型區、南方山地丘陵紅黃壤(含紫色土、石灰巖土)旱耕地類型區等7個類型。1996年頒布了農業部行業標準《全國耕作類型區、耕地地力等級劃分》,2002年全國農業技術推廣服務中心會同有關單位又制定了《全國耕地地力調查與質量評價技術規程》(試行)。由上可知,該評價體系側重于分類,在土地等級劃分上仍然是以糧食產量為標準,沒有將自然條件和人為投入體現出來。
表2-5 我國南方耕地基礎地力評價因素 Table 2-5 Factors for estimating the soil fertility of the farmland in south China
(2)農用地分等定級估價
國土資源部開展的農用地分等定級估價是“新一輪國土資源大調查――土地資源監測調查工程”的重要組成部分,是繼土地詳查摸清農用地數量和權屬后,對農用地質量和價格的大調查,旨在摸清我國農用地質量等級與價格,建立起農用地的等、級、價體系。《農用地分等規程》、《農用地定級規程》、《農用地估價規程》三個行業標準從2003年8月1日起正式頒布實施。
農用地分等技術思路表明,土地等別揭示了生產能力及其分布,包括光溫生產潛力(土地質量差異基準面)、自然質量(土地自然條件差異)、開發利用(生產者平均利用水平差異)和綜合因素(平均投入產出水平差異)等,等別層次揭示了開發利用潛力。該農用地評價體系具有以下特點:①與土地詳查、土壤普查成果相銜接;②綜合運用土地自然評價、土地經濟評價和土地利用評價的理論與方法;③在全國范圍內可比,通過包括光溫生產潛力指數、標準耕作制度、產量比系數、指定作物最大產量、最大“產量-成本”指數等國家級參數體系實現;④綜合農用地利用現狀評價、潛力評價和適宜性評價,將分等和定級結合起來。其不足之處在于沒能夠開展土壤樣品的采樣分析,部分數據陳舊。
(3)土壤質量演變規律與持續利用研究
中國科學院南京土壤研究所主持完成的國家重點基礎研究計劃項目(973項目)“土壤質量演變規律與持續利用”的總體目標是:建立土壤質量指標體系與評價系統,提出土壤質量國家標準的建議方案;評估我國主要類型耕地土壤質量,揭示其演變規律;揭示土壤圈層界面物質交換規律及其對土壤質量的影響機理;創建主要耕地土壤質量的保持與定向培育理論,建立典型耕地土壤質量數據庫與咨詢系統。主要關注的科學問題包括:①土壤質量的演變機理、分異規律及保持與定向培育理論,著重闡明影響我國土壤質量變化的主要過程、機理和調控理論,以提出均衡土壤養分和提高土壤肥力、調控鹽堿和酸化障礙因子,修復污染土壤,減輕土壤侵蝕,有效提高土壤質量的理論依據,為發展土壤資源的持續利用理論奠定基礎;②土壤圈層界面物質交換對土壤質量與動植物健康的影響機制,著重闡明土壤圈與水、氣、生物及巖石圈層界面的主要物質交換過程、速率、通量及關鍵因子,揭示土壤圈層界面物質交換的規律,及與土壤質量形成和環境演變的關系,提出土壤質量培育的界面調控理論和途徑;③土壤質量指標的表征理論與方法,運用先進的量化表達理論和方法,對遴選獲得的表征土壤質量的指標進行賦值、標準化,依據系統研究建立的土壤質量指標體系和評價系統,對土壤質量狀況進行評價。
通過重點研究,初步制定了我國主要土壤類型黑土、潮土、紅壤、水稻土、菜園土的土壤肥力質量評價指標和土壤健康質量基準。
(二)土壤質量研究進展
1.國外土壤質量評價
土壤質量是土壤在一定的生態系統內,提供生命必須養分和生產生物物質的能力,容納、降解、凈化污染物質和維護生態平衡的能力,影響和促進植物、動物和人類生命安全和健康的能力之綜合量度。
土壤質量包括三層內涵和功能:第一,土壤生產力,即土壤提高植物和生物生產力的能力;第二,環境質量,即土壤降低環境污染物和病菌損害的能力;第三,動物健康,即土壤質量影響動植物和人類健康的能力。這三項功能也被稱為土壤肥力質量、土壤環境質量和土壤健康質量,有關指標見表2-6、表2-7和表2-8。
表2-6 土壤質量田間描述性指標 Table 2-6 Descriptive index of the soil quality in the field
續表
表2-7 常用土壤質量分析性指標 Table 2-7 Common analytic index for soil quality
表2-8 土壤質量和健康狀況參數及其與土壤質量的聯系 Table 2-8 Soil quality and health condition parameters and their relationship with soil quality
續表
2.國內土壤質量評價
國內關于土壤質量的研究主要集中在土壤背景值、土壤環境容量和土壤環境質量標準研究等三個方面。
(1)土壤背景值調查和研究
土壤環境背景值是指土壤在發育形成過程中,未受或很少受到人為活動的影響,特別是未受或很少受到污染、破壞的情況下,土壤本身固有的化學組成和含量。它基本反映土壤環境原有的物質組成、性質和結構特征。“七五”期間,由國家環境保護局主持、國家教育委員會和中國科學院參與主持的國家科技攻關項目“全國土壤環境背景值研究”,是迄今為止最為系統的土壤重金屬背景值研究成果。與世界土壤相比,我國土壤的砷、鋅、銅含量高于世界均值;汞、錳、鈷在世界范圍值之中;鎘、鉻、鎳低于世界均值;鉛的變異超出世界平均范圍。歷時16年的全國第二次土壤普查工作,重點對土壤中N、P、K、Fe、Mn、Cu、Zn、B、Mo等9 種營養元素進行了系統測試分析,建立了土壤肥力分級標準。
(2)土壤環境容量研究
環境容量這一概念,大約于20世紀70年代引入到環境科學領域。目前關于土壤環境容量的概念尚在探索之中。一種觀點認為,土壤存在一個可承納一定污染物而不致污染作物的量。一般將土壤所允許承納污染物質的最大數量稱為土壤環境容量。另一種觀點認為,土壤環境容量是在不使土壤生態系統的結構和功能受到損害的條件下,土壤中所承納污染物的最大數量。后者強調必須明確污染物對土壤生態系統的結構和功能的影響,以及系統結構和功能方面的要求。不少國家,如前聯邦德國、日本、前蘇聯、澳大利亞等國家確定了某些污染物的土壤環境污染標準。我國對土壤環境容量研究已有一些報道。
土壤臨界容量可用于表征土壤對各種污染物的容納能力。在獲得土壤對污染物的各種生態效應和環境效應,并獲得各種單一體系的臨界含量后,就可以采用各種效應的綜合臨界指標得出整個土壤生態系統的臨界含量,并作為國家制定環境標準的依據和確定土壤環境容量的依據。表2-9為我國草甸褐土區各單體系的臨界含量。
表2-9 我國草甸褐土區各單體系臨界含量 Table 2-9 Critical content of each system in meadow brown soil area of China
注:*地表徑流、地下滲漏水不超標;**3.5mg/kg時,地表徑流、地下滲漏水不超標。(據夏增祿,1986)
用數學模型定量表達土壤環境容量的方法尚在探索之中。目前,常采用的確定土壤環境容量的方法包括土壤靜容量和土壤動容量。土壤靜容量是根據土壤的環境背景值和環境標準的差值來推算容量的一種簡易方法,可由Cs=M(Ci―CBi)表示(式中:M為每畝耕層土壤重量(kg),Ci為i元素的土壤臨界含量(mg/kg),CBi為i元素的土壤背景值(mg/kg))。這時,現存容量Csp=M(Ci―CBi―CP),CP是土壤中人為污染而增加的量。另外,土壤環境容量也可用Q=(CK-B)×150粗略估計(式中:Q為基本的土壤環境容量(g/畝),CK為土壤環境標準值(mg/kg),B為區域土壤背景值(mg/kg))。
土壤是一個開放的物質體系,污染物可進入土壤,也可以輸出。土壤動容量是根據污染物的殘留來計算土壤的環境容量。假定年輸入量為Q,年輸出量為Q′,若Q大于Q′,則殘留量為Q-Q′。隨著時間的推移,殘留量也不斷地增加,造成積累。累積率(K)為殘留量(Q-Q′)與輸入量Q之比,則n年內土壤污染物累積總量AT(含當年輸入量)為AT=Q+QK+QK2+…+QKn,而n年內的污染物殘留總量RT(不含當年輸入量)則為RT=QK+QK2+…+QKn。當年限n足夠長時,QKn趨于零,AT達到最大極限值。因此,污染物在土壤中的年累積量為AT′=K(B+Q)(式中:AT@為污染物在土壤中的年累積量(mg/kg),K 為土壤污染物年殘留率(%),B 為污染物的區域土壤背景值(mg/kg),Q為土壤污染物的年輸入量(mg/kg))。假定每年殘留率(K)相同、年輸入量相同,則n年內土壤的總累積量為AT=BKn+QK
。從式中可以看出,年殘留率K值的大小,對計算結果影響很大。不同地區的土壤,不同的污染物,其K 值也有差異,需通過試驗求得。利用這種計算方法,可預測某污染物累積達到區域的環境標準所需要的年限。
(3)土壤環境質量標準研究
為貫徹《中華人民共和國環境保護法》,防止土壤污染,保護生態環境,保障農林生產,維護人體健康,我國于1995年制定頒布了土壤環境質量標準(GB15618―1995)(表2-10)。該標準按土壤應用功能、保護目標和土壤主要性質,規定了土壤中污染物的最高允許濃度指標值,用于農田、蔬菜地、茶園、果園、牧場、林地、自然保護區等的土壤。該標準根據土壤應用功能和保護目標,將土壤劃分為三類:Ⅰ類主要適用于國家規定的自然保護區(原有背景重金屬含量高的除外)、集中式生活飲用水源地、茶園、牧場和其他保護地區的土壤,土壤質量基本保持自然背景水平;Ⅱ類主要適用于一般農田、蔬菜地、茶園、果園、牧場等土壤,土壤質量基本上對植物和環境不造成危害和污染;Ⅲ類主要適用于林地土壤及污染物容量較大的高背景值土壤和礦產附近等地的農田土壤(蔬菜地除外),土壤質量基本上對植物和環境不造成危害和污染。
表2-10 土壤環境質量標準值 Table 2-10 Environmental quality standard for soils (mg/kg)
注:①重金屬(鉻主要是三價)和砷均按元素量計,適用于陽離子交換量>5cmol(+)/kg的土壤,若≤5cmol(+)/kg,其標準值為表內數值的半數;②水旱輪作地的土壤環境質量標準,砷采用水田值,鉻采用旱地值。
該標準規定,一級標準為保護區域自然生態、維持自然背景的土壤環境質量的限制值;二級標準為保障農業生產、維護人體健康的土壤限制值;三級標準為保障農林業生產和植物正常生長的土壤臨界值。各類土壤環境質量執行標準的級別規定為:Ⅰ類土壤環境質量執行一級標準;Ⅱ類土壤環境質量執行二級標準;Ⅲ類土壤環境質量執行三級標準。
本網站文章僅供交流學習 ,不作為商用, 版權歸屬原作者,部分文章推送時未能及時與原作者取得聯系,若來源標注錯誤或侵犯到您的權益煩請告知,我們將立即刪除.